skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gebre, Mebatsion S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent band structure calculations have suggested the potential for band tuning in the chiral semiconductor Ag3AuTe2 to zero upon application of negative strain. In this study, we report on the synthesis of polycrystalline Ag3AuTe2 and investigate its transport and optical properties and mechanical compressibility. Transport measurements reveal the semiconducting behavior of Ag3AuTe2 with high resistivity and an activation energy Ea of 0.2 eV. The optical bandgap determined by diffuse reflectance measurements is about three times wider than the experimental Ea. Despite the difference, both experimental gaps fall within the range of predicted bandgaps by our first-principles density functional theory (DFT) calculations employing the Perdew–Burke–Ernzerhof and modified Becke–Johnson methods. Furthermore, our DFT simulations predict a progressive narrowing of the bandgap under compressive strain, with a full closure expected at a strain of −4% relative to the lattice parameter. To evaluate the feasibility of gap tunability at such substantial strain, the high-pressure behavior of Ag3AuTe2 was investigated by in situ high-pressure x-ray diffraction up to 47 GPa. Mechanical compression beyond 4% resulted in a pressure-induced structural transformation, indicating the possibility of substantial gap modulation under extreme compression conditions. 
    more » « less